Biodistribution Study of Nanoparticle Encapsulated Photodynamic Therapy Drugs Using Multispectral Imaging.

نویسندگان

  • Luma V Halig
  • Dongsheng Wang
  • Andrew Y Wang
  • Zhuo Georgia Chen
  • Baowei Fei
چکیده

Photodynamictherapy (PDT) uses a drug called a photosensitizer that is excited by irradiation with a laser light of a particular wavelength, which generates reactive singlet oxygen that damages the tumor cells. The photosensitizer and light are inert; therefore, systemic toxicities are minimized in PDT. The synthesis of novel PDT drugs and the use of nanosized carriers for photosensitizers may improve the efficiency of the therapy and the delivery of the drug. In this study, we formulated two nanoparticles with and without a targeting ligand to encapsulate phthalocyanines 4 (Pc 4) molecule and compared their biodistributions. Metastatic human head and neck cancer cells (M4e) were transplanted into nude mice. After 2-3 weeks, the mice were injected with Pc 4, Pc 4 encapsulated into surface coated iron oxide (IO-Pc 4), and IO-Pc 4 conjugated with a fibronectin-mimetic peptide (FMP-IO-Pc 4) which binds specifically to integrin β1. The mice were imaged using a multispectral camera. Using multispectral images, a library of spectral signatures was created and the signal per pixel of each tumor was calculated, in a grayscale representation of the unmixed signal of each drug. An enhanced biodistribution of nanoparticle encapsulated PDT drugs compared to non-formulated Pc 4 was observed. Furthermore, specific targeted nanoparticles encapsulated Pc 4 has a quicker delivery time and accumulation in tumor tissue than the non-targeted nanoparticles. The nanoparticle-encapsulated PDT drug can have a variety of potential applications in cancer imaging and treatment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dosimetry of Nano-Radio-Ytterbium Therapy by MIRD and MCNP methods for humans’ organs

Introduction: Nano radio-pharmaceutical therapy (NRPT) is a new method for solid tumor therapy. The treatment uses a radioactive form of radionuclide encapsulated in the poly amido amine dendrimers. The poly (amidoamine) (PAMAM) dendrimers have attracted attentions for cancer treatment by their characteristics of targeted drug carriers, delivery agents, and imaging agents in hu...

متن کامل

Radiolabeling and Biodistribution of new dual modality nanoparticle probe in Nuclear Medicine

Introduction: Dual-modality contrast agents, such as radiolabeled nanoparticles, are promising candidates for a number of diagnostic applications, namely SPECT imaging with MR imaging. So the aim of study was evaluating potential of Chitosan-Coated Magnetic Nanoparticles(SPION) labeled with 99mTc as new Dual-modality probes for liver Imaging. Materials and Methods:</st...

متن کامل

Vascular targeted nanoparticles for imaging and treatment of brain tumors.

PURPOSE Development of new therapeutic drug delivery systems is an area of significant research interest. The ability to directly target a therapeutic agent to a tumor site would minimize systemic drug exposure, thus providing the potential for increasing the therapeutic index. EXPERIMENTAL DESIGN Photodynamic therapy (PDT) involves the uptake of a sensitizer by the cancer cells followed by p...

متن کامل

Determination of the Effect of Sono-Photo Dynamic Therapy by using dual frequency in the presence of Mesoporous Silica Nanoparticles Encapsulated Porphyrin in the Treatment of Adenocarcinoma

Introduction: Breast cancer is the most common cancer among women in the world and in Iran. Sono- photodynamic therapy is a new modality for cancer treatment. In this method, a sensitizer that activates by ultrasound and light produces photochemical and synchochemical activities, thereby causing the toxicity and destruction of tumor cells. The use of dual frequency ultrasound...

متن کامل

Gold nanoparticles as cancer theranostic agents

The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 8672  شماره 

صفحات  -

تاریخ انتشار 2013